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ADSTRACT

An innovative hybrid, analog- digital charge- domain
technology, for the massively parallel VLSI implemen-
talion of certain large scale matrir-vector operations,
has recently been introduced. It employs arraysof
Charge Coupled/Charge Injection Dewvice cells holding
an analog matriz of charge, which process digital vectors
in parallel by means of binary, non-destructive charge
transfer operations. Theimpact of thisiechnology on
massively parallel processing isdiscussed. Fundamen-
tally new classes of algorithms, specifically designed for
this emerging technology, as applied fo signal process-
ing, are derived.

1. INTRODUCTION

The ever expanding capabilities of space missions data
acquisition systems is creating an unprecedented gap in
our ability to process the underlying massive volume of
information. Thus, our goa at this paper is to present
a fundamentally new classes of agorithms, specifically
designed for emerging compact integrated systems com-
posed of salable, high performance, massively parallel
computing units in charge-domain technology.

Many agorithms required for scientific modeling will
make frequent use of a few well defined, often function-
ally simple, but computationally very intensive data
processing operations, Those operations generally im-
pose a heavy burden on the computational power of a
conventional general-purpose computer, and run much
more efficiently on special-purpose processors that are
specifically tuned to address a single intensive compu-
tation task only.

An innovative hybrid, analog-digital charge-domain
technology, for the massively paralel VLSIimplemen-
tation of certain large scale matrix-vector operations,
has recently been developed and applied at Caltech

[1,2.3,5,6], It employs arrays of Charge Cou-
pled/Charge Injection Device (CCD/CID) cells hold-
ing an analog matrix of charge, which process digita
vectors in parallel by means of binary, non-destructive
charge transfer operations.

Figure 1 shows a simplified schematic of the CCD/CID
array. Each cell in the array connects to an input col-
umn line and an output row line by means of a col-
umn gate and a row gate. Both gates together hold a
charge in the silicon substrate underneath them that
represents an analog matrix element. By default, the
matrix charge sits under the column gates. In the ba-
sic matrix-vector multiplication (MVM) mode of oper-
ation, for binary input vectors, the column gates serve
as binary-analog multipliers by transferring the matrix
charge towards the row gates only if the input bit of
the column indicates a binary ‘one’. The charge trans-
ferred under the row gates is summed capacitively on
each output row line, yielding an analog output vector
which is the product of the binary input vector with
the analog charge matrix. By virtue of the CCIY/CID
device physics, the charge sensing at the output is of
a non-destructive nature, and the charge matrix is re-
stored in its original state simply by pushing the charge
back under the column gates.

A bit-serial digital-analog MVM can be obtained from a
sequence of binary-analog MVM operations, by feeding
in successive vector input bits sequentially, and adding
the corresponding output contributions after scaling
them with the appropriate powers of two. A simple
parallel array of divide-by-two circuits at the output
accomplishes this task [3,6].

The particular choice of this unusua charge-domain
technology resulted from several considerations not just
limited to issues of speed and paralelism. Incomnpar-
son to other, more common paralel high-speed tech-
nology environments (digital CMOS, etc.), the distinct
virtues of our charge-domain technology for large-scale
special-purpose MVM operations are the following:



Very High Density:  The compactness of the
CCD/CID cell alows the integration of up to 10°cells
o alem? die (in a standard 2pm CMOS technology).
providing single-chip 100 GigaOPS computation power.

Very Low Power Consumption: The charge stored
inthe matrix is conserved along the computation
process because of the non-destructive nature of the
CCD/CID operation.  Hence, the entire power con-
sumption is localized at the interface of the array, for
clocking, 1/0 and matrix refresh purposes. This en-
ables the processor to operate at power levels in the
mW /TeraOPS range.

Scalability: The saable architecture of the CCD/CID
array alows the interfacing of many individual proces-
sors in paralel, combining together to form effective
processing units of higher dimensionality, still operat-
ing a nominal speed.

1/0 Flexibility: Although an analog representation
is used inside the array to obtain fast paralel computa-
tion, the architecture of the processor provides the flex-
ibility of a full digital interface, eliminating the band-
width and noise problems typical for analog interfacing.

Programming Flexibility: The architecture allows
for either optical (parallel, sustained [1]) or electronic
(semi-parallel, periodical [6]) loading of the charge ma
trix. The latter method requires interrupts, of duration
usually much shorter than the time interval in computa-
tion mode, for which the stored charge matrix remains
valid before a matrix refresh is needed.

A variety of MVM processors of different dimensions
have been designed and tested at Caltech. Prelimi-
nary results on a 128 x 128 working prototype, imple-
mented on a single 4mmx 6mm diein 2um CCD-CM OS
technology, indicate a performance of approximately
10'° 8-- bit multiply-accumulates per second. Pro-
cessors With 1024 x 1024 cells will be realizable in the
mar future.

2, IMPACT ON PARALLEL COMPUTA-
TIONAL COMPLEXITY

An innovative approach to parallel algorithms design
remains a key enabling factor for high performance
computing. In contrast to conventional approaches,
one must develop computational schemes which exploit,
from the onset, the concept of massive paralelism. The
CCD/CID neurd chip represents a promising hardware
technology for massively parallel computation, which
offers both opportunities and challenges in the design
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of parallel algorithms. This new technology defies some
of the most baste assumptions in the analysis of com-
putat ional complexity of parallel algorithms. ‘1’0 clarify
this, ashort discussion is needed. in what follows, NV x 1
vectors and N x N mat rices are considered. Also, m and
a stand for multiplication and addition, respectively,

One of the most fundamental results regarding the com-
plexity of parallel computation addresses the summa
tion of N scalars [7,8].

Theorem 1. The summation of N scalars can be per-
formed in O(log N )a operations with O(N) processors,
Hence,

Corollary 1. A matrix-vector multiplication can
be performed in O(log N)a+ O(1 )m operations with
0( N?)processors.

interestingly, the result of Theorem 1 has been assumed
to be independent of hardware technology. This re-
flects a basic feature of digital computers, which do
not alow the simultaneous summation of N numbers,
The CCD/CID technology defies this most basic as-
sumption, since the summation of N numbers is just
the summation of N charges, which can be performed
simultaneously. This is a fundamental change, which
leads to a new set of results regarding the complexity
of parallel computation using CCD/CID architectures.
We submit that:

Theorem 2. The summation of N scalars can be per-
formed in O(1)a operations with O( N') “processors”
(CCD/CID cells). ‘1'bus,

Corollary 2. A matrix-vector multiplication can be
performed in O(1)a + O(1 )m operations with O( N?)
‘(processors’ (CCD/CID cdls).

It is important to note that the complexity of these
operations is independent of the problem size, assuming
that the chip size matches the problem.

The above results are not only significant from a the-
oretical point of view, since they improve the known
time-lower bounds in these computations, but are also
of practical importance. They show that the design
and analysis of parallel algorithms based on CCD/CID
neural architectures is drastically different from that for
conventional parallel computers. The CCD/CID chip
is currently considered for performing Matrix-Vector
Multiplication (MVM) for which it achieves the com-
putation time given in Corollary 2. However, in order
to output the results, & clock cycles are needed, where
k is the required number of bits. The CCI}/CID chip



is most efficient for MVM computations wherein the
matrix is known a priori; also of relevance are series of
MVMs performed with the same matrix. Despite this
seemingly narrow function, the CCD/CIDneuroproces-
sor can be used for many applications, leading to new
results.

3. SIGNAL PROCESSING APPLICATION

The foundation of conventional signal processing algo-
rithms is based on the use of fast techniques for per-
forming various discrete transformations such as ) FT,
1) ST, DCT,DHT,etc... Consider the discrete Fourier
Transforin (DFT). The DFT can be represented by a
Matrix-Vector Multiplication (MVM) with a computa-
tional complexity of O(N?).However, for both serial
and paralel computation on conventional hardware,
the Fast Fourier Transform(FFT) is aways preferred.
For serial computation, the FFT achieves a computa-
tional complexity of O(N Log V). Also, for implementa-
tion on paralel and vector computer architectures, the
FI'T has been considered as the base line agorithm. In
particular, with O(N) processors, a time lower bound
of O( l.,og N ) can be achieved in computing the F}FT.
Note, however, that this resu It is more of a theoretical
importance than a practical one since, particularly for
large N, implementat ion of the algorithm to achieve
the above time lower bound would require an architec-
ture with an excessive number of processors, and, more
importantly, a very complex processors interconnection
structure.

Asstated before, with conventional hardwaretechnol-
ogy, the time lower bound in computing a MVM is
0( L.og N) by using O(N?) processors. Note, however,
that this result is more relevant to theory than to prac-
tice, since such an implementation of MVM requires a
very complex parallel architecture. In contrast, a prac-
tical implementation of MVM on the CCD/CID chip
can be performed in O(1) steps. Such a result indi-
cates that, for efficient implementation of signal pro-
cessing applications on CCD/CID chips, a new algo-
rithmic framework is required, which significantly dif-
fers from the conventional fast techniques framework.
In particular, the DHT, which was one of the topics
investigated in this task, can be more efficiently imple-
mented than the FHT. In fact, while the DHT can be
performed in 0(1) with one CCD/CID chip, the imple-
mentation of FHT requires O(Log N) chips and takes
O(lLog N) steps!

In the following, we first discuss how a complex DFT
can be obtained from the DHT by using CCD/CID
chips. Then, a more interesting result is presented,

regarding the convolution of two signals. We show
that, by using CCD/CID chips, the convolution can
be presented as a single MVM, and heuce can be per-
formed with the highest area and time efficiency, \We
also present a technique for area and time efficient DFT
where the size of transform is much larger than the size
of the CC/CID chip. We conclude by outlining possi-
ble architectures that should enable high precision com-
puting with charge-domain devices. Most of the ideas
are further expanded in a recently published article,
attached in appendix,

3,1 Computing DFT from DHT

We have considered the DHT as the main kernel for
implementation on the CCD/CID chip. The DHT and
itsinverse are given [9, 1 O] as

1 2rnm

Hony = 5 cas == o

and
2rnm

HL = NHppm = cas (2)

the kernel for DHT and inverse DHT are shown in Fig-
ures 2 and 3 respectively,
In the above expressions

Cas (#) = Cos (8) + sin (8) 3
The first issue is the computation of the DFT from the

DHT.Let the DFT and DHT of a signal g be given as

f=Flgland h =H[g] where F' and H are the DFT
and DHT operators. In terms of the real and imaginary
part of f it follows that

f = Rel[f] + i Im[f] = E[h] - iO[h] (4)

where £ and O are even and odd operators defined as

A L R R B TR B
2 2
h+ - h (5)
oA - - h (- n
Olh] = L Olh] = Lo ZhrL P o

(6)

Let h+ denote the vector h with normal ordering of the
elements, i.e,

ht = [ho, by, - hna)! @



Also, let h'denote the permutation vector h as

h- =[ho, hAn-1, . . - In]* ®

Wenotethat h"and A~ can be related through a per-
muatation matrix P as

h= = Ph* 9)

where P is given as

O .

~

Fromkgs. (5), (6) and (9), the expressions for F[h)]
and O[h] are obtained as

P+1 pP-1

f’/[h] = **'2—-}1 and - O[h] = "‘é“h (IO)
Fromkqs. (4) and ( 10), f is obtained as
P+1 P11
f= 7 h+i 3 h (11)
(= E;LJ—Hg + i%—-l-llg (12)

The matrices £ i and £5L H are constant and can
be precomputed. Therefore, Eq. ( 12) leads to a direct
redlization of DFT, as shown in Figure 4.

3.2 Fast Arca-Efficient Convolution UsingDHT

We consider the convolution problem, that is, the com-
putation of a signal g as

g=lg+ % (13)

where it is assumed that g is the input and g is known
a priori, and hence its DHT can be precomputed. Let

f = F['g] and 'h = H[lg] (14)
’f = F 29] and 2h = H| 29] (15)
T = FlgJand h= H[g] (16)

where F' and H denote the DFT and DHT operators,
respectively.

In accordance with Parseval’s Theorem, we have
g = F'Y{'fo 2} = PTYF['90O Fl)) a7)

where F~1is the inverse DFT operator and & indi-
cates component-by-component multiplication of two
vectors. The above expression forms the basis of con-
ventional convolution algorithms. Assuming 2to be
known a priori, a first FFT is used to compute ! f in
O(N LogN) steps, then the product of !'f® 2is ob-
tained in O(N) steps, and finally another FE'T is used
to compute fin O(N LogN) step.

However,Eq. (17) is not suitable for implementation on
CCD/CID chips. Hence, a new formulation is needed
to take into account the fact that the only operation
that can be efficiently performed is a MVM. In terms
of DHT, h can be expressed[1 1] as

h= %[lh+@2h+ O+ YO hT 4 A G)Qh*]
(18)
One can also express h in terms of even and odd opet-
ators as
h = E[*h*]0 W +0[%h*] @ h™

19
= E[*hN)o Rt + O[ W)@ [P 'hY) (19
The © operation of two vectors can be described by a
diagonal matrix-vector multiplication as

v=21o % — v= ‘9% (20)

where ' is a diagona matrix whose diagonal elements

are those of vector 'v. Using such a representation, Eq.
( 18) can now be expressed rra

h = {E[%h* )4 O[ *h*|P} ‘At (1)



Let us define a matrix Q in terms of the matrices E
and O: ) )
Q = {E[*h*]+ O[] P}

Note that, since it is assumed that g is known a priori,
the matrix Q is also known a priori. From Egs. (]9)
and (20), it follows that

h=QH g (23)
and finally
g= H 'h=NHQH'g

Eq. (22) illustrates that convolution can be performed
in terms of a simple matrix-vector multiplication, by
defining an appropriate convolution operator. Specifi-

tally, wc set
C=NHQH (25)

This is illustrated below.

3.3 Computing Large DFT with Small Size
CCD/CID Chips

We now consider the case wherein the size of the desired
transform, N, is larger than the size of the CCD/CID
chip, M. A direct (“brute force”) approach would be to
build an N XN DHT matrix by using M x M CCD/CID
chips. From our discussion in Sec. 3., it then follows
that 2( N/M)? CCD/CID chips of sze M x M would
be required for computation of a DFT of size N.

The main issues in devising a better approach for per-

forming large DFT with small size CCD/CID chips can
be summarized as follows:

1. Preserve the computational efficiency;
2. Reduce the number of chips;

3. Reduce the complexity of additional hardware.

Our approach is based on reducing the area-time prod-
uctby using hybrid algorithms based on a combination

(22) of Fast Hartley Transform (FHT)and DHT, i.e., by . .

ing higherradix FHT. To see this, let us consider again
the DHT as
h=Hg

where

h = [h(0), h(1), h(2), -, h(N —1)]*

9 =[9(0),9(1), g(2),- “.9(N = 1)J* (26)

(24) Let us also consider the case where M = N/2. The

Decimation-in-Frequency (DIF) of aFHT of size N in
terms of DHT of size N/2 is given as

he  H(NJ2) H(N/2) g
hy = S(N/2) —S(NJ/2) g @7
where
gr = [4(0). ( 1),g(2)’-~.‘g(§ _ )
9= L9505 + 1) g (W)
and
he = [N(0), h(2), h(4), -+ h(N - 2’
ho = (A(1), A(3), h(5),- -, A(N ~ 1]
Also, we have
S(N/2) = H(N/2)K(N/2) (29)

N(N/2) = Diag{cos(2nr K/ N)} 4 Diag{sin(2xN/N) } P

(29)
In the above expressions H(N/2) represents a DHT of
size N/2, and P is the permutation matrix as defined
before. Then, Eq. (27) can be written as

h, _ H(N/2) H(N/2) gp
ho ~ H(N/DK(N/2) ~H{(N/2)K(N/2) g,
(30)
or, equivaently
he ) . H(N/?)(g,,+ gr) (31)
ho = H(N/2)K(N/2)(gp - 9r)

The flowgraph of the DIF FHT is shown in Figure
5. Our methodology leads to a both time- and area-
efficient redlization of a DFT of size N. This is illus-
trated in Figure 6.



In summary, note that, compared tothe direct ap-
proach, the number of required CCD/CID chips has
been reduced from 8 to 4 at the cost of only two
additional simple bit-serial adders. Also, since the
CCD/CID chip has a hit-serial data input format, per-
forming bit-serial addition on the data will increase the
computation timeby only a cycle. Generalization to
different Mf-to- N ratios is straightforward.

5. CONCLUSIONS

Inthis paper, we have presented the massively parallel
CCD/CID hardware architecture. Thisnew hardware
technology leads to some interesting and fundamentally
different results on the complexity of paralel computa-
tion. It also require a new framework for the design
and analysis of parallel algorithmiswhich is drastically
different from that usually used for more conventional
paralle hardware architecture. In particular, we would
like to emphasize that on CCD/CID chips many opera-
tions can be performed in a time of O(1) which implies
that the computation time is independent of the size
of the problem. This is a drastic departure from classi-
al theory of paralel computational complexity wherein
the bounds of both time and processors are a function
of problem size.

The CCD/CID computing technology could be used
in a wide range of applications, As anexample, We
have presented some algorithms for signal processing
applications. However, a much wider class of prob-
lems, such as partial differential equations (PDES), for
which CCD/CID technology can be efliciently used, are
currently under investigation. It is important to note
that the current CCD/CID technology offers a rather
limited accuracy. We have recently developed some
techniques to significantly improve the computational
accuracy while preserving fundamental advantages of
CCD/CID technology.
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Fig. 1. The CCD/CID architecture consists of an array of CCD elements that are connected together by
row and column electrodes. The matrix values are encoded as charge packets that sit underneaththese gates in
the silicon substrate, The computation occurs when the charges are transformed from the column gates to the

row gates which perform capacitive sum operation.
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